Aquatic toxicity assessment of single-walled carbon nanotubes using zebrafish embryos
نویسندگان
چکیده
Zebrafish embryos selected at the 64-cell stage were exposed to various concentrations of amide functionalized single-walled carbon nanotubes (SWCNTs) ranging from 1 to 10 μg/ml dissolved in 1% Pluronic F-68 (a cell culture grade surfactant), and the development of embryos was examined from 24 to 120 hours post fertilization (hpf). Incubation of embryos in 1% F-68 did not induce overt abnormal phenotype as compared to the wild-type; neither did it cause significant mortality during the exposure period. Generally, there was a slight developmental delay in larvae treated with SWCNTs of 5 μg/ml or above. Only larvae exposed to 5 μg/ml SWCNTs showed significantly reduced survival rates. About 50% of the embryos exposed to 5 μg/ml showed abnormal phenotypes at 24 hpf as compared to the control group. As development proceeds to 120 hpf, more embryos displayed defective morphology. A slight hatching delay was observed in embryos exposed to concentrations above 5 μg/ml. There was a general reduction of body axes, including narrowed somite and shortened yolk stalk. In addition, pigmentation in the ventral trunk area was less than that observed in control group. The body lengths of the exposed embryos were decreased significantly at 48 hpf (3.11 mm in control vs. 3.00 mm in SWCNTs-exposed embryos). However, exposure to SWCNTs did not affect the number of somites. Other features that were noticed in the SWCNTs-exposed embryos included edema and shrinkage and blebbling of the epidermal lining. Most of these observed phenotypes persisted from 48 hpf through 120 hpf. Overall, the aforementioned results indicate that soluble amide-functionalized SWCNTs are toxic to zebrafish embryos at a minimum concentration of 5 μg/ml.
منابع مشابه
Nanotherapeutics in angiogenesis: synthesis and in vivo assessment of drug efficacy and biocompatibility in zebrafish embryos
BACKGROUND Carbon nanotubes have shown broad potential in biomedical applications, given their unique mechanical, optical, and chemical properties. In this pilot study, carbon nanotubes have been explored as multimodal drug delivery vectors that facilitate antiangiogenic therapy in zebrafish embryos. METHODS Three different agents, ie, an antiangiogenic binding site (cyclic arginine-glycin-ea...
متن کاملحذف کادمیوم از محیطهای آبی با استفاده از نانولولههای کربنی تک جداره عاملدار شده با ال-سیستئین
Background and purpose: Cadmium is a very toxic metal that have adverse effects on human health and aquatic environments even at low concentrations, therefore, efforts should be made to eliminate this metal from aquatic ecosystem. The aim of this study was to investigate the efficacy of L-cysteine functionalized single-walled carbon nanotubes in removing cadmium from aqueous environments. This ...
متن کاملDrosophila Embryos as Model to Assess Cellular and Developmental Toxicity of Multi-Walled Carbon Nanotubes (MWCNT) in Living Organisms
Different toxicity tests for carbon nanotubes (CNT) have been developed to assess their impact on human health and on aquatic and terrestrial animal and plant life. We present a new model, the fruit fly Drosophila embryo offering the opportunity for rapid, inexpensive and detailed analysis of CNTs toxicity during embryonic development. We show that injected DiI labelled multi-walled carbon nano...
متن کاملInfluence of carbon nanotube length on toxicity to zebrafish embryos
There is currently a large difference of opinion in nanotoxicology studies of nanomaterials. There is concern about why some studies have indicated that there is strong toxicity, while others have not. In this study, the length of carbon nanotubes greatly affected their toxicity in zebrafish embryos. Multiwalled carbon nanotubes (MWCNTs) were sonicated in a nitric acid solution for 24 hours and...
متن کاملAcute Toxicity Comparison of Single-Walled Carbon Nanotubes in Various Freshwater Organisms
While the commercialization of single-walled carbon nanotubes (SWCNTs) is rapidly expanding, the environmental impact of this nanomaterial is not well understood. Therefore, the present study evaluates the acute aquatic toxicity of SWCNTs towards two freshwater microalgae (Raphidocelis subcapitata and Chlorella vulgaris), a microcrustacean (Daphnia magna), and a fish (Oryzias latipes) based on ...
متن کامل